# Module 8: Antimicrobial Stewardship for Urinary Tract Infections



## **Objectives**

By the end of this module, you should be able to:

- 1. Recognize common and complex UTI symptoms
- 2. Understand key principles of antimicrobial stewardship (AMS) for UTI
- 3. Distinguish UTIs from similar conditions
- 4. Use diagnostic tools for Urinary tract infections
- 5. Apply local resistance data and guidelines to choose the right antibiotics
- 6. Optimize antibiotic use in outpatient settings through AMS practices, aiming to prevent resistance



#### Introduction

- Urinary tract infections (UTIs) are a significant global health concern, with approximately 150 million cases reported annually. Women bear the brunt of this burden, with 50-60% experiencing at least one UTI during their lifetime. Older adults and pregnant women are also at higher risk, while the prevalence in men increases with age, often due to prostate-related issues.
- Urinary tract infections (UTI) are one of the most common indications for antibiotic prescriptions in the outpatient setting.
- Given rising rates of antibiotic resistance among uropathogens, antibiotic stewardship is critically needed to improve outpatient antibiotic use, including in outpatient clinics.



#### Introduction...

- Outpatient clinics are in general a neglected practice area in antibiotic stewardship programs, yet most antibiotic use is in the outpatient setting.
- Stewardship should focus on the "five Ds" of stewardship for UTI: right diagnosis, right drug, right dose, right duration, and de-escalation.



## Classification of Urinary Tract Infections

- Uncomplicated UTIs:
  - Typically occur in healthy individuals with normal urinary tracts.
- Complicated UTIs:
  - Include factors like structural abnormalities, catheter use, or immunosuppression
- Special Populations:
  - Considerations for different age groups, including children and the elderly



#### **Clinical Presentation of UTI-Adults**

## Lower UTIs (Cystitis): Common Symptoms:

- Dysuria
- Increased Urinary Frequency and urgency
- Suprapubic Pain
- Hematuria
- Cloudy or Foul-Smelling Urine

#### **Less Common Symptoms**:

Mild Fever

## **Upper UTIs (Pyelonephritis): Common Symptoms:**

- Flank Pain
- High Fever
- Nausea and Vomiting
- Malaise

#### **Systemic Symptoms**

- Fatigue
- Confusion, especially in older adults, UTIs can sometimes present with confusion or delirium



#### **Clinical Presentation of UTI-Children**

#### Infants (0-2 years):

#### **Non-Specific Symptoms:**

- Fever
- Irritability
- Poor Feeding
- Vomiting or Diarrhea
- Failure to Thrive

#### Young Children (2-5 years):

#### **More Specific Symptoms:**

- Dysuria
- Increased Urinary Frequency and Urgency
- Abdominal Pain
- Fever

#### **Older Children and Adolescents:**

Symptoms Similar to Adults



## **Clinical Presentation - Atypical Presentations**

#### **Asymptomatic Bacteriuria:**

- **Adults**: Presence of bacteria in the urine without symptoms, common in elderly and pregnant women
- Children: May occur without typical symptoms, sometimes detected during routine screening

#### **Special Populations:**

- **Elderly Adults**: May present with atypical symptoms such as confusion, sudden incontinence, without classic urinary symptoms
- Immunocompromised Individuals: May have less pronounced symptoms or atypical presentations



## Clinical Presentation - Atypical Presentations

#### **Complications Associated with UTI Presentations**

- Progression to Pyelonephritis: Risk factors and signs of progression from lower UTI to upper UTI
- **Sepsis**: Signs of systemic infection, particularly in elderly, infants, or immunocompromised patients
- **Recurrent UTIs**: Recognition of symptoms suggestive of recurrent infections, which may require further evaluation



## **Right Diagnosis**

| Diagnostic task                                       | What works                                                                           | What might work                                                                           | What does not work                                                                    |
|-------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| Differentiate UTI from asymptomatic bacteriuria       | Careful history to elicit symptoms of UTI                                            | Physical examination                                                                      | Urinalysis and urine culture (both will be positive in ASB)                           |
| Differentiate UTI from sexually transmitted infection | Careful history to elicit<br>symptoms of STI<br>(vaginal discharge); test<br>for STI | Limited pelvic exam<br>(discharge, lesions); rapid<br>UTI diagnostics (in<br>development) | Urinalysis (pyuria likely) and urine culture (contamination likely)                   |
| Differentiate UTI from overactive bladder             | Careful history; urine culture (if negative)                                         | Urologic evaluation                                                                       | Urinalysis and urine culture in patients with high prevalence of baseline bacteriuria |
| Determine etiology of delirium in older adults        | Explore nonurinary<br>etiologies of acute<br>mental status change                    | Observe patient without prescribing antibiotics; encourage oral fluids                    | Urinalysis and urine culture (both may be positive in nonurinary etiologies)          |
| Differentiate UTI from nonurinary conditions          | Careful history, explore nonurinary etiologies                                       | Rapid UTI diagnostics (in development), particularly in younger adults                    | Urinalysis and urine culture in patients with high prevalence of baseline bacteriuria |



## **Clinical Diagnostics**

#### **Risk Factors for UTI**

- Female gender (especially in sexually active women)
- History of previous UTIs
- Recent sexual activity
- Use of contraceptives like spermicides or diaphragms
- Postmenopausal status
- Diabetes mellitus
- Presence of a urinary catheter or recent urological procedures

#### Note:

Complicated UTIs are those occurring in individuals with structural or functional abnormalities of the urinary tract, immunosuppression, or other risk factors such as pregnancy or diabetes. These require a more thorough evaluation and possibly different management strategies.



## Clinical diagnostics....

#### **Conditions that can mimic UTI symptoms include:**

- **Vaginitis**: Inflammation of the vagina often presents with dysuria and frequency but usually also includes vaginal discharge and irritation.
- **Urethritis:** Inflammation of the urethra, often caused by sexually transmitted infections (STIs), may mimic UTI symptoms.
- **Interstitial cystitis:** A chronic condition that causes bladder pressure and pain, sometimes confused with UTIs due to similar symptoms.
- **Prostatitis:** In men, inflammation of the prostate gland can cause symptoms similar to a UTI, such as dysuria and frequency.



## **Laboratory Diagnostics**

#### **Urinalysis**

- Help diagnose and/or monitor several diseases and conditions, such as kidney disorders or urinary tract infections (UTIs)
- A complete urinalysis consists of three distinct testing phases:
  - Visual examination, which evaluates the urine's colour and clarity
  - Chemical examination, which tests chemically for about 9 substances that provide valuable information about health and disease and determines the concentration of the urine
  - Microscopic examination, which identifies and counts the type of cells, casts, crystals, and other components such as bacteria and mucus that can be present in urine



## **Laboratory Diagnostics...**

#### **Culture: Most Common Urinary Pathogens**

#### **Gram-negative Organisms**

- Enterobacteriales: E. coli, K. pneumoniae, Enterobacter, Serratia
- Non-Enterobacteriales: Pseudomonas aeruginosa, Acinetobacter spp

#### **Gram-positive Cocci**

- Enterococccus spp.
- Streptococcus agalactiae or Group B Streptococcus (GBS)
- Staphylococcus aureus

**Note:** Urine specimens should be collected before empiric treatment



#### **Positive Urine Cultures Could be Due To:**

- Contamination
- Asymptomatic bacteriuria
- A true infection involving either the lower and/or upper urinary tract

#### **Key to note:**

- Clinicians should only send urine cultures when they have significant clinical suspicion of infection to avoid detecting asymptomatic bacteriuria
- Antimicrobials are commonly inappropriately prescribed for asymptomatic bacteriuria, driving the emergence of antimicrobial resistance



## **Laboratory Diagnostics...**

#### **Antimicrobial susceptibility testing (AST)**

- Antimicrobial Susceptibility Testing Guidelines such as Clinical Laboratory and Standards Institute (CLSI) has been adopted in selecting Antimicrobials for AST
- Group U ("urine"): Used primary for treating urinary tract infection. NOT routinely reported against pathogens recovered from other sites of infection (e.g. Sulfonamides and nitrofurantoin)



## The 5Ds of Stewardship for UTI

| The 5 Ds of Stewards | of<br>hip for UTI | Description                                                                                              | Main Challenge                                                            | Successful Intervention Strategies                                                                                                                                                                                                                          |
|----------------------|-------------------|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                      | Diagnosis         | Make and document<br>the right diagnosis                                                                 | Determining which patients have UTI                                       | Clinical decision aids Appropriate collection of cultures Urine procurement by catheterization Reflex urine cultures Computerized decision support systems Selective reporting of urine culture results Text accompanying results to provide interpretation |
| 8                    | Drug              | Use the right<br>empiric antibiotic                                                                      | Rising resistance<br>makes empiric<br>treatment<br>challenging            | Local susceptibility reports and stratified antibiograms Selective and cascade reporting of antibiotic susceptibility Provider education Computerized decision support systems Post-prescription review by pharmacists Audit and feedback                   |
| R <sub>x</sub>       | Dose              | Use the right<br>dose of antibiotic<br>based on site of<br>infection and renal or<br>hepatic dysfunction | Dosage errors<br>are common                                               | Computerized decision support systems<br>Electronic order sets<br>Audit and feedback                                                                                                                                                                        |
|                      | Duration          | Use antibiotics for the recommended duration                                                             | Many studies show<br>a "longer is better"<br>mentality                    | Computerized decision support systems<br>Electronic order sets<br>Audit and feedback                                                                                                                                                                        |
|                      | De-escalation     | De-escalate therapy<br>based on susceptibilities<br>and when urine cultures<br>are negative              | Labor intensive and<br>occurs too late with<br>UTI to make much<br>impact | Post-prescription review by pharmacists                                                                                                                                                                                                                     |

## Right Drug/Dose/Duration (WHO)-Adults

#### **Uncomplicated UTIs:**

- First-Line Treatment
  - Nitrofurantoin: 100 mg orally twice daily for 5 days
  - Trimethoprim-sulfamethoxazole (TMP-SMX): 160/800 mg orally twice daily for 3 days, only if local resistance rates are <20%.</li>
  - Fosfomycin trometamol: 3 g single oral dose
- Alternative Treatments
  - Pivmecillinam: 400 mg orally twice daily for 5 days
  - Amoxicillin-clavulanate: 500/125 mg orally twice daily for 5-7 days



## Right Drug/Dose/Duration (WHO)-Adults...

#### **Complicated UTIs**

- Initial Empiric Therapy
  - Ceftriaxone: 1 g intravenously daily until culture results are available.
  - Fluoroquinolones (e.g., ciprofloxacin): 500 mg orally twice daily for 7-14 days, depending on severity
- Definitive Therapy
  - Adjust based on culture and sensitivity results
- Special Considerations
  - Pregnancy: Nitrofurantoin (after the first trimester) or amoxicillinclavulanate; avoid fluoroquinolones



## Right Drug/Dose/Duration (WHO)-Children

#### **Uncomplicated UTIs**

- First-Line Treatment
  - Amoxicillin-clavulanate: 20-40 mg/kg/day orally in three divided doses for 7-10 days
  - Cefalexin: 25-50 mg/kg/day orally in divided doses for 7-10 days
- Alternative Options
  - Cotrimoxazole (TMP-SMX): 8 mg/kg TMP and 40 mg/kg SMX per day in two divided doses for 7-10 days, based on local resistance patterns



## Right Drug/Dose/Duration (WHO)-Children...

#### **Complicated UTIs**

- Initial Empiric Therapy
  - Ceftriaxone: 50-75 mg/kg intravenously once daily until culture results are available
- Definitive Therapy
  - Adjust based on culture results and clinical response
- Duration of Treatment
  - Generally, 7-14 days depending on the severity and response to treatment



#### **De-escalation**

#### **Initial Empiric Therapy:**

• **Broad-Spectrum Antibiotics**: Often recommended empirically for complicated UTIs or in severely ill patients (e.g., ceftriaxone, fluoroquinolones)

#### **De-escalation Process**

- Culture and Sensitivity Testing: Essential to guide de-escalation decisions once results are available
- Switch to Narrow-Spectrum Antibiotics
  - If a specific pathogen is identified, switch to a narrow-spectrum antibiotic effective against that pathogen



#### De-escalation...

#### Discontinuation of Therapy

 If the infection is ruled out based on culture results, discontinue antibiotics to avoid unnecessary treatment

#### **Monitoring and Reassessment**

 Regular clinical monitoring and reassessment of therapy, particularly within 48-72 hours of initiating treatment, to determine if de-escalation is appropriate



## Case study 1

You are evaluating a 45-year-old woman who presents to your clinic for management of her chronic essential hypertension. She shows you a urine culture report that was performed at another clinical laboratory 3 weeks ago which grew **3 different organisms in large quantities**. She reports that this culture was performed because she complained of **dysuria**, **urinary urgency and urinary frequency** and that she was told she had a bladder infection. She completed several days of an antibiotic (she cannot recall the name), with resolution of her symptoms. She no longer has dysuria, urinary frequency and she denies fever and abdominal or back pain. Her vital signs are normal and her physical examination is unremarkable. But she asked you if she should submit another sample for urine culture



#### **Case Assessment**

- The patient had UTI symptoms (dysuria, urgency, frequency) but has since resolved after antibiotic treatment.
- The urine culture performed three weeks ago showed multiple organisms, suggesting possible contamination rather than a true infection.
- She is currently asymptomatic and her physical examination is normal.
- The patient is questioning the need for a repeat urine culture.



### **Learning Points from the case**

- Since the patient is now asymptomatic, there is no indication for a repeat urine culture. Urine cultures should be reserved for cases with persistent symptoms or complications
- A culture with multiple organisms often suggests contamination, particularly if it was collected improperly or processed late
- Antibiotics should not be prescribed based solely on a positive culture in the absence of symptoms
- Educate the patient on when urine cultures are necessary and reassure her that asymptomatic bacteriuria does not generally require treatment



## **Key Points**

- AMS is vital for UTI management to improve outcomes
- Accurate UTI diagnosis is key for guiding appropriate antibiotic therapy.
- Collect urine specimens before starting broad-spectrum antibiotics
- Prescribe the correct antibiotic, dose, and duration
- Avoid antibiotics for asymptomatic bacteriuria, except in specific cases (e.g., pregnancy).
- Use local resistance data to inform empiric antibiotic therapy.
- Regularly review antibiotic prescribing patterns and adjust as needed.



## The End



You have come to the end of this module. Kindly attempt module 8 quiz before proceeding to module 9